top of page

Publications

Journal paper (peer reviewed)

  1. T. Kano and S. Kinoshita, Viscosity-dependent Flow Reversal in a Density Oscillator, Physical Review E, 76 (2007), 046208 

  2. T. Kano and S. Kinoshita, Modeling of the Flow-reversal Process in a Density Oscillator, Journal of the Korean Physical Society, 53 (2008), 1273-1279 

  3. T. Kano and S. Kinoshita, Method to Control the Coupling Function Using Multilinear Feedback, Physical Review E, 78(2008), 056210

  4. T. Kano and S. Kinoshita, Modeling of a Density Oscillator, Physical Review E, 80 (2009), 046217

  5. T. Kano and S. Kinoshita, Generalized Method to Control Coupled-oscillator System Using Multi-linear Feedback, Forma, 24(2009), 29-35 

  6. T. Kano and S. Kinoshita, Control of Individual Phase Relationship between Coupled Oscillators Using Multilinear Feedback, Physical Review E, 81 (2010), 026206 

  7. T. Sato, T. Kano, and A. Ishiguro, On the Applicability of the Decentralized Control Mechanism Extracted from True Slime Mold –A Robotic Case Study with a Serpentine Robot–, Bioinspiration & Biomimetics, 6 (2011), 026006 

  8. W. Watanabe, T. Kano, S. Suzuki, and A. Ishiguro, A Decentralised Control Scheme for Orchestrating Versatile Arm Movements in Ophiuroid Omnidirectional Locomotion, Journal of the Royal Society Interface, 9 (2012), 102-109

  9. T. Sato, T. Kano, and A. Ishiguro, A Decentralized Control Scheme for Effective Coordination of Phasic and Tonic Control in a Snake-like Robot, Bioinspiration & Biomimetics, 7 (2012), 016005 

  10. T. Kano, S. Suzuki, W. Watanabe, and A. Ishiguro, Ophiuroid Robot That Self-organizes Periodic and Non-periodic Arm Movements, Bioinspiration & Biomimetics, 7 (2012), 034001

  11. T. Kano, T. Sato, R. Kobayashi, and A. Ishiguro, Local Reflexive Mechanisms Essential for Snakes' Scaffold-based Locomotion, Bioinspiration & Biomimetics, 7 (2012), 046008

  12. T. Kano, Y. Watanabe, and A. Ishiguro, Towards Realization of Multi-terrestrial Locomotion: Decentralized Control of a Sheet-like Robot Based on Scaffold-exploitation Mechanism, Bioinspiration & Biomimetics, 7 (2012), 046012

  13. D. Owaki, T. Kano, K. Nagasawa, A. Tero, and A. Ishiguro, Simple Robot Suggests Physical Interlimb Communication is Essential for Quadruped Walking, Journal of the Royal Society Interface, 10 (2013), 20120669

  14. T. Kano, T. Kawakatsu, and A. Ishiguro, Generating Situation-dependent Behavior: Decentralized Control of Multi-functional Intestine-like Robot That Can Transport and Mix Contents, Jounral of Robotics and Mechatronics, 25 (2013), 871-876

  15. 渡邉航,鈴木翔太,加納剛史,石黒章夫,腕運動の自己組織的役割分担生成を可能とするクモヒトデ型ロボットの自律分散制御,計測自動制御学会論文集,49 (2013), 48-53

  16. T. Kano, R. Kobayashi, and A. Ishiguro, Decentralized Control Scheme for Adaptive Earthworm Locomotion Using Continuum-Model-Based Analysis, Advanced Robotics, 28 (2014), 197-202 

  17. T. Kano, Y. Watanabe, F. Satake, and A. Ishiguro, Decentralized-controlled Multi-terrain Robot Inspired by Flatworm Locomotion, Advanced Robotics, 28 (2014), 523-531

  18. R. Fujiwara, T. Kano, and A. Ishiguro, Self-swarming Robots That Exploit Hydrodynamical Interaction, Advanced Robotics, 28 (2014), 639-645

  19. T. Kano, D. Owaki, and A. Ishiguro, A Simple Measure for Evaluating Gait Patterns during Multi-legged Locomotion, SICE Journal of Control, Measurement, and System Integration, 7 (2014), 214-218

  20. 中島大樹,佐竹冬彦,伊達央,加納剛史,石黒章夫,ヘビが示す多様なロコモーション様式の再現を目指した自律分散型ロボット,日本ロボット学会誌,34 (2016), 205-210

  21. T. Kano, Y. Sugiyama, and A. Ishiguro, Autonomous Decentralized Control of Traffic Signals That Can Adapt to Changes in Traffic, Collective Dynamics, 1, A5 (2016), 1-18 

  22. T. Umedachi, T. Kano, A. Ishiguro, and B. Trimmer, Gait Control in a Soft Robot by Sensing Interactions with the Environment Using Self-deformation, Royal Society Open Science, 2 (2016),160766

  23. K. Yasui, K. Sakai, T. Kano, D. Owaki, and A. Ishiguro, Decentralized Control Scheme for Myriapod Robot Inspired by Adaptive and Resilient Centipede Locomotion, PLOS ONE, 12 (2017), e0171421

  24. T. Kano, K. Sakai, K. Yasui, D. Owaki, and A. Ishiguro, Decentralized Control Mechanism Underlying Interlimb Coordination of Millipedes, Bioinspiration & Biomimetics, 12 (2017), 036007

  25. Y. Matsuzaka, E. Sato, T. Kano, H. Aonuma, and A. Ishiguro, Non-centralized and Functionally Localized Nervous System of Ophiuroids: Evidence from Topical Anesthetic Experiments, Biology Open, 6 (2017), 425-438

  26. T. Kano, R. Yoshizawa, and A. Ishiguro, Tegotae-based Decentralised Control Scheme for Autonomous Gait Transition of Snake-like Robots, Bioinpiration & Biomimetics, 12 (2017), 046009

  27.  S. Tanaka, S. Nakata, and T. Kano, Dynamic Ordering in a Swarm of Floating Ddroplets Driven by Solutal Marangoni Effect, Journal of the Physical Society of Japan, 86 (2017), 101004

  28. T. Kano, K. Osuka, T. Kawakatsu, and A. Ishiguro, Mathematical Analysis for Non-reciprocal-interaction-based Model of Collective Behavior, Journal of the Physical Society of Japan, 86 (2017), 124004

  29. T. Kano, E. Sato, T. Ono, H. Aonuma, Y. Matsuzaka, and A. Ishiguro, A Brittle Star-like Robot Capable of Immediately Adapting to Unexpected Physical Damage, Royal Society Open Science, 4 (2017), 171200

  30. A. Fukuhara, D. Owaki, T. Kano, R. Kobayashi, and A. Ishiguro, Spontaneous Gait Transition to High-speed Galloping by Reconciliation between Body Support and Propulsion, Advanced Robotics, 32 (2018), 794-808

  31. E.G. Clark, D. Kanauchi, T. Kano, H. Aonuma, D.E.G. Briggs, and A. Ishiguro, The Function of the Ophiuroid Nerve Ring: How a Decentralized Nervous System Controls Coordinated Locomotion, Journal of Experimental Biology, 222(2019), jeb192104

  32. T. Kano, Y. Ikeshita, A. Fukuhara, and A. Ishiguro, Body-limb Coordination Mechanism Underlying Speed-dependent Gait Transitions in Sea Roaches, Scientific Reports, 9 (2019), 2848

  33. A. Fukuhara, Y. Koizumi, S. Suzuki, T. Kano, and A. Ishiguro, Decentralized Control Mechanism for Body–limb Coordination in Quadruped Running, Adaptive Behavior, doi: 10.1177/1059712319865180 (2019)

  34. T. Kano, R. Wakimoto, M. Sato, A. Shinohara, and A. Ishiguro, Designing Higher Fourier Harmonics of Tegotae Function Using Genetic Algorithm – A Case Study with an Earthworm Locomotion, Bioinpiration & Biomimetics, 14 (2019), 054001

  35. T. Kano, D. Kanauchi, H. Aonuma, E.G. Clark, and A. Ishiguro, Decentralized Control Mechanism for Determination of Moving Direction in Brittle Stars with Penta-radially Symmetric Body, Frontiers in Neurorobotics, 13 (2019), 66

  36. S. Suzuki, T. Kano, A.J. Ijspeert, and A. Ishiguro, Decentralized Control with Cross-coupled Sensory Feedback between Body and Limbs in Sprawling Locomotion, Bioinpiration & Biomimetics, 14 (2019), 066010

  37. K. Yasui, T. Kano, E. Standen, H. Aonuma, A. J. Ijspeert, and A. Ishiguro, Decoding the Essential Interplay between Central and Peripheral Control in Adaptive Locomotion of Amphibious Centipedes, Scientific Reports, 9 (2019), 18288

  38. T. Kano, D. Kanauchi, T. Ono, H. Aonuma, and A. Ishiguro, Flexible Coordination of Flexible Limbs: Decentralized Control Scheme for Inter- and Intra-limb Coordination in Brittle stars' Locomotion, Frontiers in Neurorobotics, 13 (2019), 104

  39. T. Kano, E. Naito, T. Aoshima and A. Ishiguro, Decentralized Control for Swarm Robots That Can Effectively Execute Spatially Distributed Tasks, Artificial Life, 26 (2020), 242-259

  40. T. Kano and A. Ishiguro, Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes, Integrative and Comparative Biology, 60 (2020), 232-247

  41. 天野也寸志,日比野良一,菅井賢,加納剛史,石黒章夫,分散協調制御によるマルチモータシステムの一構成法,計測自動制御学会論文集,56 (2020), 521-530

  42. T. Mikami, T. Kano, A. Ishiguro, An agent-based model for community formation process of vampire bats that survive by sharing food, Journal of Artificial Life and Robotics, 25 (2020), doi: 10.1007/s10015-020-00649-9

  43. T. Kano, K. Yasui, T. Mikami, M. Asally, and A. Ishiguro, An agent-based model of the interrelation between the COVID-19 outbreak and economic activities, Proceedings of the Royal Society A, 477 (2021) 20200604

  44. S. Suzuki, T. Kano, A. J. Ijspeert, A. Ishiguro, Sprawling Quadruped Robot Driven by Decentralized Control with Cross-coupled Sensory Feedback between Legs and Trunk, Frontiers in Neurorobotics, 14 (2021) 607455

  45. T. Kano, M. Iwamoto, D. Ueyama, Decentralised Control of Multiple Mobile Agents for Quick, Smooth, and Safe Movement, Physica A, 572 (2021) 125898

  46. S. Suzuki, T. Kano, A. J. Ijspeert, A. Ishiguro, Spontaneous Gait Transitions of Sprawling Quadruped Locomotion by Sensory-Driven Body–Limb Coordination Mechanisms, Frontiers in Neurorobotics, 15 (2021) 645731

  47. R. Thandiackal, K. Melo, L. Paez, J. Herault, T. Kano, K. Akiyama, F. Boyer, D. Ryczko, A. Ishiguro, A. J. Ijspeert, Emergence of Robust Self-Organized Undulatory Swimming Based on Local Hydrodynamic Force Sensing, Science Robotics, 6 (2021) eabf6354

  48. A. Fukuhara, Y. Koizumi, T. Baba, S. Suzuki, T. Kano, A. Ishiguro, Simple Decentralized Coordination Mechanism That Enables Limb Adjustment for Adaptive Quadruped Running, Proceedings of the Royal Society B, 288 (2021) 20211622

  49. A. Fukuhara, W. Suda, T. Kano, R. Kobayashi, and A. Ishiguro, Adaptive Interlimb Coordination Mechanism for Hexapod Locomotion Based on Active Load Sensing, 16 (2022) 645683

  50. K. Yasui, S.Takano, T. Kano, A. Ishiguro, Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics, Frontiers in Robotics and AI, 9 (2022), 797566

  51. T. Kano, T. Kanno, T. Mikami, A. Ishiguro, Active-sensing-based Decentralized Control of Autonomous Mobile Agents for Quick and Smooth Collision Avoidance, Frontiers in Robotics and AI 9, (2022), 992716

  52. D. Umetsu, S. Yamaji, D. Wakita, T. Kano, Quantitative Analysis of the Coordinated Movement of Cells in a Freely Moving Cell Population, Journal of Robotics and Mechatronics, 35 (2023), 931-937

  53. T. Mikami, D. Wakita, R. Kobayashi, A. Ishiguro, T. Kano, Elongating, Entwining, and Dragging: Mechanism for Adaptive Locomotion of Tubificine Worm Blobs in a Confined Environment, Frontiers in Neurorobotics, 17 (2023), 1207374

  54. H. Amaike, A. Fukuhara, T. Kano, A. Ishiguro, Decentralized Control Mechanism Underlying Morphology-Dependent Quadruped Turning, Journal of Robotics and Mechatronics, to be published

International conference (peer reviewed)

  1. T. Kano and S. Kinoshita, Phase Control of Coupled Oscillators Using Multilinear Feedback, Proceedings of 2009 International Symposium on Nonlinear Theory and its Applications (NOLTA), (2009), 34-37 

  2. T. Kano, T. Sato, R. Kobayashi, and A. Ishiguro, Toward Well-balanced Coupling between Phasic and Tonic Control –A Case Study with a Serpentine Robot–, Proceedings of the 13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), (2010), 165-172

  3. T. Kano, K. Nagasawa, D. Owaki, A. Tero, and A. Ishiguro, A CPG-based Decentralized Control of a Quadruped Robot Based on Discrepancy Function, Proceedings of the 13th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), (2010), 157-164

  4. T. Kano, T. Sato, R. Kobayashi, and A. Ishiguro, Decentralized Control of Serpentine Locomotion That Enables Well-balanced Coupling between Phasic and Tonic Control, Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2010), 2856-2861

  5. T. Kano, K. Nagasawa, D. Owaki, A. Tero, and A. Ishiguro, A CPG-based Decentralized Control of a Quadruped Robot Inspired by True Slime Mold, Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2010), 4928-4933

  6. T. Kano, T. Sato, R. Kobayashi, and A. Ishiguro, Decentralized Control of Scaffold-assisted Serpentine Locomotion That Exploits Body Softness, Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), (2011), 5129-5134

  7. A. Ishiguro, D. Owaki, K. Nagasawa, T. Kano, and A. Tero, Adaptive Inter-limb Coordination via Spontaneous Switching between Oscillatory and Excitatory Regimes, Proceedings of the 2nd International Conference on Morphological Computation (ICMC), (2011), page not shown 

  8. T. Kano, T. Sato, R. Kobayashi, and A. Ishiguro, Decentralized Control of Multi-articular Snake-like Robot for Efficient Locomotion, Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2011), 1875-1880 

  9. T. Sato, T. Kano, and A. Ishiguro, A Snake-like Robot Driven by a Decentralized Control That Enables Both Phasic and Tonic Control, Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2011), 1881-1886

  10. W. Watanabe, S. Suzuki, T. Kano, and A. Ishiguro, Moving Right Arm in the Right Place: Ophiuroid-inspired Omnidirectional Robot Driven by Coupled Dynamical Systems, Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2011), 1895-1900

  11. T. Kano, T. Sato, R. Kobayashi, and A. Ishiguro, Efficient Undulating Locomotion Driven by a Decentralized Control That Fully Exploits Multi-articular Muscles, Proceedings of the 5th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2011), 69-70

  12. K. Yaegashi, T. Kano, R. Kobayashi, and A. Ishiguro, Decentralized Control of an Earthworm-like Robot That Fully Exploits Mechanical Interaction, Proceedings of the 5th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2011), 67-68

  13. W. Watanabe, S. Suzuki, T. Kano, and A. Ishiguro, Towards Understanding of Versatility of Animal Behavior: A Mathematical Model for Ophiuroid Omnidirectional Locomotion, Proceedings of the 5th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2011), 7-8

  14. T. Kano, Y. Watanabe, and A. Ishiguro, SheetBot: Two-dimensional Sheet-like Robot As a Tool for Constructing Universal Decentralized Control Systems, Proceedings of 2012 IEEE International Conference on Robotics and Automation (ICRA), (2012), 3733-3738 

  15. D. Owaki, T. Kano, A. Tero, M. Akiyama, and A. Ishiguro, Minimalist CPG Model for Inter- and Intra-limb Coordination in Bipedal Locomotion, Proceedings of the 12th International Conference on Intelligent Autonomous Systems (IAS), (2012), page not shown

  16. T. Kano, S. Suzuki, and A. Ishiguro, Autonomous Decentralized Control Mechanism in Resilient Ophiuroid Locomotion, Proceedings of Living Machines 2012, LNAI 7375, (2012), 363-364

  17. A. Ishiguro, K. Yaegashi, T. Kano, and R. Kobayashi, Decentralized Control Scheme That Enables Scaffold-based Peristaltic Locomotion, Proceedings of Living Machines 2012, LNAI 7375, (2012), 361-362

  18. T. Sato, T. Kano, A. Hirai, and A. Ishiguro, A Soft-bodied Snake-like Robot That Can Move on Unstructured Terrain, Proceedings of Living Machines 2012, LNAI 7375, (2012), 390-391

  19. Y. Sunada, T. Sato, T. Kano, A. Ishiguro, and R. Kobayashi, Intuitive Navigation of Snake-like Robot with Autonomous Decentralized Control, Proceedings of Living Machines 2012, LNAI 7375, (2012), 398-399

  20. T. Sato, T. Kano, R. Kobayashi, and A. Ishiguro, Snake-like Robot Driven by Decentralized Control Scheme for Scaffold-based Locomotion, Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2012), 132-138 

  21. T. Kano, Y. Watanabe, and A. Ishiguro, SheetBot: A Magic Carpet That Enables Scaffold-based Locomotion, Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2012), 1434-1439 

  22. T. Kano, D. Owaki, and A. Ishiguro, Reconsidering Inter- and Intra-limb Coordination Mechanisms in Quadruped Locomotion, Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2012), 4873-4878

  23. T. Kano, Y. Watanabe, F. Satake and A. Ishiguro, Development of Sheet-like Robot for Multi-terrestrial Locomotion, Proceedings of the 6th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2013), page not shown

  24. T. Kano, D. Owaki, and A. Ishiguro, From Walk to Trot to Bound: Quadruped Gait Transition Induced by Simple Local Force Feedback Mechanism, Proceedings of the 6th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2013), page not shown

  25. T. Kano, S. Suzuki, E. Sato, H. Aonuma and A. Ishiguro, Toward Realization of Resilient Locomotion: Lessons from the Locomotion of Arm-amputated Ophiuroids, Proceedings of the 6th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2013), page not shown

  26. A. Ishiguro, T. Kano and D. Owaki, Toward Unified Understanding of Inter-limb Coordination Mechanism Underlying Multi-legged Locomotion, Proceedings of the 6th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2013), page not shown

  27. T. Kano, H. Date and A. Ishiguro, Considering Snake Locomotion with “Continuum Legs”, Proceedings of Dynamic walking 2013, (2013), page not shown

  28. T. Kano and A. Ishiguro, Obstacles Are Beneficial to Me! Scaffold-based Locomotion of a Snake-like Robot Using Decentralized Control, Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2013), 3273-3278 

  29. T. Kano, R. Kobayashi, and A. Ishiguro, Decentralized Control Scheme for Bodily Wave Generation in Earthworm Locomotion, Proceedings of Traffic and Granular Flow ’13, (2013), 107

  30. T. Kano, H. Date, and A. Ishiguro, Simple Decentralized Control Scheme Can Reproduce Versatile Gait Patterns of Snakes, Proceedings of 2014 International Symposium on Nonlinear Theory and its Applications (NOLTA), (2014), 20-23

  31. T. Kano, F. Satake, H. Date, K. Inoue, and A. Ishiguro, Doing Well in Narrow Aisle! Decentralized Control Mechanism Underlying Adaptive Concertina Locomotion of Snakes, Proceedings of 2014 International Symposium on Nonlinear Theory and its Applications (NOLTA), (2014), 32-35

  32. T. Kano, K. Osuka, T. Kawakatsu, and A. Ishiguro, Self-organization of Motile Oscillators Inspired by Friendship Formation, Proceedings of 2014 International Symposium on Nonlinear Theory and its Applications (NOLTA), (2014), 341-344

  33. A. Ishiguro, K. Nakamura, T. Kano, and D. Owaki, Neural Communication vs. Physical Communication between Limbs: Which is Essential for Hexapod Walking? , Proceedings of Dynamic Walking 2014, (2014), page not shown

  34. T. Kano, H. Chiba, T. Umedachi, and A. Ishiguro, TEGOTAE-based Control for One-dimensional Crawling Locomotion, Proceedings of the 7th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2015), page not shown

  35. T. Kano, H. Date, K. Inoue, and A. Ishiguro, Snake-like Robot That Exhibits Adaptive Concertina Locomotion, Proceedings of the 7th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2015), page not shown

  36. H. Aonuma, M. Goda, S. Kuroda, T. Kano, D. Owaki, and A Ishiguro, Cricket Switches Locomotion Patterns from Walking to Swimming by Evaluating Reaction Forces from the Environment, Proceedings of the 7th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2015), page not shown

  37. T. Kano, H. Chiba, T. Umedachi, and A. Ishiguro, Decentralized Control of 1D Crawling Locomotion by Exploiting “TEGOTAE” from Environment, Proceedings of the 1st International Symposium on Swarm Behavior and Bio-Inspired Robotics (Swarm), (2015), 279-282

  38. T. Kano, D. Owaki, A. Fukuhara, R. Kobayashi, and A. Ishiguro, New Hypothesis for the Mechanism of Quadruped Gait Transition, Proceedings of the 1st International Symposium on Swarm Behavior and Bio-Inspired Robotics (Swarm), (2015), 275-278

  39. K. Yasui, K. Sakai, T. Kano, D. Owaki and A. Ishiguro, TEGOTAE-based Decentralized Control Mechanism Underlying Myriapod Locomotion, Proceedings of the 1st International Symposium on Swarm Behavior and Bio-Inspired Robotics (Swarm), (2015), page not shown

  40. T. Kano, K. Yasui, D. Owaki, and A. Ishiguro, Decentralized Control Scheme for Myriapod Locomotion That Exploits Local Force Feedback, Proceedings of Living machines 2016, LNAI 9793, (2016), 449-453 

  41. T. Kano, R. Yoshizawa, and A. Ishiguro, TEGOTAE-based Control Scheme for Snake-like Robots That Enables Scaffold-based Locomotion, Proceedings of Living machines 2016, LNAI 9793, (2016), 454-458 

  42. M. Goda, S. Miyazawa, S. Itayama, D. Owaki, T. Kano, and A. Ishiguro, Understanding Interlimb Coordination Mechanism of Hexapod Locomotion via "TEGOTAE"-based Control, Proceedings of Living machines 2016, LNAI 9793, (2016), 441-448 

  43. R. Yoshizawa, T. Kano, and A. Ishiguro, Realization of Snakes' Concertina Locomotion by Using "TEGOTAE-based Control", Proceedings of Living machines 2016, LNAI 9793, (2016), 548-551 

  44. K. Yasui, T. Kano, D. Owaki, and A. Ishiguro, Decentralized Control Scheme for Centipede Locomotion Based on Local Reflexes, Proceedings of Living machines 2016, LNAI 9793, (2016), 545-547 

  45. A. Fukuhara, D. Owaki, T. Kano, and A. Ishiguro, Leg Stiffness Control Based on "TEGOTAE" for Quadruped Locomotion, Proceedings of Living machines 2016, LNAI 9793, (2016), 79-84 

  46. T. Kano and A. Ishiguro, Decentralized Control of Earthworm-like Robot Based on Tegotae Function, Proceedings of the 8th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2017), 92-93

  47. K. Yasui, K. Kikuchi, T. Kano, Y. Hayase, S. Kuroda, H. Aonuma, R. Kobayashi, and A. Ishiguro, Decentralized Control Mechanism Underlying Interlimb Coordination of Centipedes, Proceedings of the 8th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2017), 82-83

  48. S. Suzuki, A. Fukuhara, D. Owaki, T. Kano, A. Ijspeert, and A. Ishiguro, A Minimal Model for Body-limb Coordination in Quadruped Locomotion, Proceedings of the 8th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2017), 106-107

  49. A. Fukuhara, D. Owaki, T. Kano, R. Kobayashi, and A. Ishiguro, Gait Transition to Gallop via an Interlimb Coordination Mechanism Based on Tegotae from Body Support and Propulsion, Proceedings of the 8th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2017), 80-81

  50. S. Suzuki, A. Fukuhara, D. Owaki, T. Kano, A. Ijspeert, and A. Ishiguro, A Simple Body-limb Coordination Model That Mimics Primitive Tetrapod Walking, Proceedings of SICE Annual Conference, (2017), 12-14 

  51. T. Kano, K. Osuka, T. Kawakatsu, N. Matsui, and A. Ishiguro, A Minimal Model of Collective Behaviour Based on Non-reciprocal Interactions, Proceedings of the 14th European Conference on Artificial Life, (2017), 237-244 

  52. S. Tanaka and T. Kano, Collective Dynamical Orderings of Oil Droplet Surfers, Proceedings of the 2nd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM), (2017), 272-273

  53. T. Kano, D. Kanauchi, H. Aonuma, and A. Ishiguro, Decentralized Control Mechanism Underlying Inter- and Intra-arm Coordination in Brittle Star’s Locomotion, Proceedings of the 16th International Echinoderm conference, (2018), 74

  54. T. Kano, R. Yoshizawa, and A. Ishiguro, Snake-like Robot That Can Generate Versatile Gait Patterns by Using Tegotae-based Control, Proceedings of Living machines 2018, LNAI 10928, (2018), 249-254

  55. K. Akiyama, K. Yasui, J. Arreguit, L. Paez, K. Melo, T.Kano, A.J. Ijspeert, and A. Ishiguro, Undulatory Swimming Locomotion Driven by CPG with Multimodal Local Sensory Feedback, Proceedings of Living machines 2018, LNAI 10928, (2018), 1-5

  56. T. Kano, M. Asally, and A. Ishiguro, Decentralized Control Scheme for Swarm Robots with Self-Sacrifice, Proceedings of the 2018 Conference on Artificial Life (ALIFE), (2018), 544-545

  57. T. Kano, N. Matsui, and A. Ishiguro, Decentralized Control Scheme for Coupling between Undulatory and Peristaltic Locomotion, Proceedings of the 15th International Conference on the Simulation of Adaptive Behavior (SAB), (2018), 90-101 

  58. A. Fukuhara, Y. Koizumi, S. Suzuki, T. Kano, and A. Ishiguro, Minimal Model for Body-Limb Coordination in Quadruped High-Speed Running, Proceedings of the 15th International Conference on the Simulation of Adaptive Behavior (SAB), (2018), 56-65

  59. T. Kano, M. Iwamoto, and D. Ueyama, Decentralized Control for Self-driving Cars That can Freely Move on Two-dimensional Plane, Proceedings of the Pedestrian and Evacuation Dynamics (PED), (2018), 474-476 

  60. T. Kano, K. Yasui, and A. Ishiguro, Decentralized Control Scheme for Multi-legged Robot That Enables Well-balanced Coupling between Peristaltic and Legged Motions, Proceedings of the SICE annual conference, (2018), 317-320

  61. T. Kano, N. Matsui, and A. Ishiguro, 3D Movement of Snake Robot Driven by Tegotae-based Control, Proceedings of Living Machines 2019, LNAI 11556, (2019), 346-350

  62. T. Kano, E. Naito, T. Aoshima, and A. Ishiguro, Engineering Application of Non-Reciprocal-Interaction-Based (NRIB) Model: Swarm Robotic System That Can Perform Spatially Distributed Tasks in Parallel, Proceedings of the 2019 Conference on Artificial Life (ALIFE), (2019), 606-607

  63. T. Mikami, M. Asally, T. Kano and A. Ishiguro, A Reaction-Diffusion Model for Simulating the Oscillatory Expansion of Biofilms, Proceedings of the 2019 Conference on Artificial Life (ALIFE), (2019), 218-219

  64. T. Kano, D. Kanto, and A. Ishiguro, Non-trivial Behaviors Emerging from a Simple Decentralized Rules (Part 1): A Case Study with One-dimensional Crawling Locomotion, Proceedings of the 9th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2019), A3

  65. T. Kano, N. Matsui, E. Naito, T. Aoshima, and A. Ishiguro, Non-trivial Behaviors Emerging from a Simple Decentralized Rules (Part 2): A Case Study with Swarming of Individuals, Proceedings of the 9th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2019), A4

  66. K. Yasui, K. Furukawa, A. Fukuhara, T. Kano, and A. Ishiguro, Decentralized Control Scheme for Adaptive Body-limb Coordination in Centipede Walking, Proceedings of the 9th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2019), A21

  67. S. Suzuki, T. Kano, A. J. Ijspeert, and A. Ishiguro, A Salamander Robot Driven by Cross-coupled Sensory Feedback Control between Legs and Trunk, Proceedings of the 9th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2019), A5

  68. A. Fukuhara, S. Saito, W. Suda, T. Kano, and A. Ishiguro, Inter- and Intra-limb Coordination Mechanism under Limited Actuator Capabilities in Adaptive Quadruped Locomotion, Proceedings of the 9th International Symposium on Adaptive Motion in Animals and Machines (AMAM), (2019), A22

  69. A. Fukuhara, D. Owaki, T. Kano, and A. Ishiguro, On the Determinant of Spontaneous Gait Transition in Legged Locomotion, Proceedings of SICE Annual Conference, (2019), 254-257

  70. A. Fukuhara, S. Suzuki, T. Kano, A. Ishiguro, Efficient Quadrupedal Walking Via Decentralized Coordination Mechanism between Limbs and Neck, Proceedings of 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2019), 1715-1720

  71. T. Kano, M. Iwamoto, and D. Ueyama, Decentralized Control for Self-driving Cars Capable of Moving Fast, Smoothly, and Safely on Two-dimensional Plane, Proceedings of the 3rd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM), (2019), 203-204

  72. T. Mikami, T. Kano, and A. Ishiguro, An Agent-based Model for the Community of Vampire Bats That Survive by Sharing Food, Proceedings of the 3rd International Symposium on Swarm Behavior and Bio-Inspired Robotics (SWARM), (2019), 194-196

  73. T. Kano, R. Senofieni, A. Fukuhara, A. Ishiguro, Adaptive One-dimensional Crawling Robot Driven by Simple Decentralized Control Mechanism, Proceedings of the 2020 Conference on Artificial Life (ALIFE), (2020), 696-698

  74. T. Mikami, M. Asally, T. Kano, A. Ishiguro, One-dimensional Reaction-diffusion Model for Intra- and Inter- Biofilm Oscillatory Dynamics, Proceedings of the 2020 Conference on Artificial Life (ALIFE), (2020), 712-714

  75. M. Dujany, S. Hauser, M. Mutlu, M. Sar, J. Arreguit, T. Kano, A. Ishiguro, and A. Ijspeert, Emergent Adaptive Gait Generation through Hebbian Sensor-motor Maps by Morphological Probing, Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2020), 7866-7873

  76. T. Kano, K. Yasui, T. Mikami, M. Asally, A. Ishiguro, Mitigation of COVID-19 Outbreak While Continuing Economic Activities, Proceedings of the 2021 Conference on Artificial Life, ABMHuB 2021 workshop, page not shown. 

  77. K. Yasui, T. Kano, S. Kuroda, H. Aonuma, Y. Hayase, R. Kobayashi, A. Ishiguro, On the Determinant of Gait Patterns in Myriapod Locomotion, Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 21.

  78. K. Yasui, N. Otaki, T. Kano, A. Ishiguro, Self-tunable Tegotae-based Control for Snake Locomotion, Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 22.

  79. S. Suzuki, A. Norita, A. Fukuhara, T. Kano, A. Ishiguro, Decentralized Control Mechanisms Underlying Neck–limb Coordination in Horse Walking and Trotting, Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 24.

  80. S. Suzuki, T. Kano, E. M. Standen, A. J. Ijspeert, A. Ishiguro, Decentralized Control Mechanisms for a Walking Fish (Polypterus senegalus), Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 36.

  81. H. Amaike, A. Fukuhara, M. Gunji, Y. Masuda, K. Tadakuma, T. Kano, A. Ishiguro, Simulation of quadruped robot walking considering anatomical features of distal forelimb, Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 10.

  82. A. Fukuhara, T. Kano, R. Kobayashi, Y. Yamamoto, A. Ishiguro. WaltzBots: Toward understanding interpersonal coordination mechanism underlying ballroom dance, Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 13.

  83. S. Hattori, S. Suzuki, A. Fukuhara, T. Kano, A. Ishiguro, A model-free balance control for running quadruped robot using bicycle dynamics, Proceedings of the 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2021), 16.

  84. K. Yasui, T. Kanno, T. Kano, A. Ishiguro, Decentralized control of pedundulatory and peristaltic locomotion inspired by polycheates, Proceedings of the SICE annual conference 2021, , (2021), 60-65. 

  85. S. Hattori, S. Suzuki, A. Fukuhara, T. Kano, A. Ishiguro, On the stability of bicycle-inspired balance control for running quadruped robots, Proceedings of the SICE annual conference 2021, (2021), 66-68. 

  86. T. Kano, S. Kawamura, T. Mikami, A. Ishiguro, Toward Realization of Highly Survivable Engineering Systems: A Simple Mathematical Model of Social Interactions among Vampire Bats, The 2022 Conference on Artificial Life, ABMHuB 2022 workshop, page not shown

  87. K. Yasui, S. Takano, T. Kano, A. Ishiguro, Simple Reactive Head Motion Control Enhances Adaptability to Rough Terrain in Centipede Walking, Proceedings of Living Machines 2022, 262-266

  88. T. Kano, T. Kanno, T. Mikami, A. Ishiguro, Decentralized Control for Quick and Smooth Collision Avoidance of Mobile Agents by Using Active Sensing, Proceedings of the SICE annual conference, (2022), 464-467

  89. K. Yasui, A. Sato, N. Otaki, T. Kano, A. Ishiguro, Decentralized Control Mechanism That Well Reproduces Concertina Locomotion in Snakes, Proceedings of the SICE annual conference, (2022), 460-463

  90. S. Suzuki, T. Kano, A. Ishiguro, Decoupled Oscillator-based Control for Lizard-like Walking, Proceedings of the SICE annual conference, (2022), 458-459

  91. H. Nishii, S. Hattori, A. Fukuhara, H. Ishihara, T. Kano, A. Ishiguro, K. Osuka, A Humanoid Robot with Anatomy Trains that can Passively Sustain Standing Postures, Proceedings of the 11th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2023), 71-72

  92. S. Hattori, A. Fukuhara, T. Kano, A. Ishiguro, Why Are Cheetahs So Powerful? S-shaped Flexion Spine Effect on Cheetah Galloping, Proceedings of the 11th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2023) , 39-40

  93. T. Maeta, H. Amaike, A. Fukuhara, T. Kano, A. Ishiguro, On the Role of the Leading Limb in Quadrupedal Turning, Proceedings of the 11th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2023), 162-163

  94. K. Yasui, G. Seino, T. Yamaichi, Y. Sugiyama, T. Kano, A. Ishiguro, Exploring Common Control Principles Underlying Versatile Body–limb Coordination in Many-legged Locomotion, Proceedings of the 11th international symposium on Adaptive Motion of Animals and Machines (AMAM), (2023), 51-52

  95. A. Fukuhara, R. Akimoto, T. Kano, R. Kobayashi, Y. Yamamoto, A. Kijima, K. Yokoyama, A. Ishiguro, Interpersonal Coordination Mechanism via Assistive Hold in Ballroom Dancing, Proceedings of the SICE annual conference, (2023), 401-407

Domestic conference (only peer reviewed papers are shown)

  1. 加納剛史, 大須賀公一, 小林亮,青沼仁志,石川将人,杉本靖博,大脇大,石黒章夫,交友関係の自己組織化過程の数理モデル,第19回交通流のシミュレーションシンポジウム予稿集,(2013), 89-92

  2. 加納剛史,大須賀公一,川勝年洋,石黒章夫,非対称相互作用に起因する秩序形成のミニマルモデル,第20回交通流のシミュレーションシンポジウム予稿集,(2014), 11-14

  3. 加納剛史,杉山雄規,石黒章夫,力積予測に基づく交通信号の自律分散制御,第20回交通流のシミュレーションシンポジウム予稿集,(2014), 47-50

解説記事

1.    加納剛史,石黒章夫,クモヒトデに学ぶレジリアントな振る舞いの設計原理,計測と制御,54 (2015), 254-259
2.    加納剛史,石黒章夫,ヘビの多芸多才なロコモーションに内在する自律分散制御則,生物物理,60 (2020), 272-275
3.   T. Miura, K. Oguchi, H. Yamaguchi, M. Nakamura, D. Sato, K. Kobayashi, N. Kutsukake, K. Miura, Y. Hayashi, M. Hojo, K. Maekawa, S. Shigenobu, T. Kano and A. Ishiguro, Understanding of superorganisms: collective behavior, differentiation and social organization. Artificial Life and Robotics (2022). doi.org/10.1007/s10015-022-00754-x
4.   加納剛史,安井浩太郎,石黒章夫,ロコモーションの本質理解から切り拓く自律分散型ヘビロボットの設計論,日本ロボット学会誌, Vol. 40 (2022), 40 (2022), 283-287.
5.   T. Kano, Review of Interdisciplinary Approach to Swarm Intelligence, Journal of Robotics and Mechatronics, 35 (2023), 890-895.

Books

1.   S. Kinoshita, Pattern Formation and Oscillatory Phenomena (T. Kano: Chapter 4 “Density Oscillators” (pp. 119-164) を分担執筆)

Other publications

  1. T. Kano, N. Matsui, E. Naito, T. Aoshima, and A. Ishiguro Swarm Robots Inspired by Friendship Formation Process, arXiv: 1808.03812 (2018)

  2. 加納剛史,医学から理学,工学へ,数理生物学会ニュースレター 第80号 2015年数理生物学会奨励賞受賞者特別寄稿 (2016) , 1-4

  3. 加納剛史,私が愛する一本の数式,数理生物学会ニュースレター 第85号 数理の小ネタ(2018), 6-9

  4. 加納剛史,大須賀公一,川勝年洋,石黒章夫,遊び心で作った秩序形成の数理モデル,京都大学数理解析研究所講究録2063 (2018), 73-83

  5. T. Kano, K. Yasui, T. Mikami, M. Asally, and A. Ishiguro, An agent model for interrelation between COVID-19 outbreak and economic activities, arXiv:2007.11988 (2020)

Invited talks

1.     加納剛史,Multi-linear feedbackを用いた結合振動子の位相制御,非線形動力学セミナー,(京都大学) (2009)

2.     加納剛史,Multi-linear feedbackを用いた結合振動子の動的振舞いの制御,第102回「非線形・統計力学とその周辺」セミナー,(京都大学)(2009)

3.     加納剛史,ヘビのロコモーションから学ぶ生物の適応的運動機能の発現原理 ~位相制御と筋緊張制御の有機的整合を可能とする自律分散制御則~,日本機械学会ロボメカ部門東北支部特別講演会,(東北大学)(2010)

4.     加納剛史,CPGか局所反射か?ヘビの適応的かつ多様なロコモーションに内在する自律分散制御則,第54回 自律分散システム部会研究会 ~生物における多自由度系~,(東北大学)(2014)

5.     加納剛史,腕を切断してもへこたれない生物「クモヒトデ」に学ぶレジリアントなシステムの設計論,平成27年度第4回ブレインウェア研究会,(東北大学)(2015)

6.     T. Kano, Toward Understanding of the Decentralized Control Mechanism Underlying Adaptive Locomotion of Animals, Award lecture in the annual meeting of the Japanese Society for Mathematical Biology, (Kyushu University) (2016)

7.     加納剛史,遊び心で作った秩序形成の数理モデル,京都大学数理解析研究所(RIMS)研究会,(京都大学)(2016)

8.     加納剛史,交友関係の形成過程に着想を得た群れ形成のミニマルモデル,AICSシンポジウム「群れ」,(早稲田大学)(2016)

9.     加納剛史,生き生きとした振る舞いを生み出す一本の数式,第16回創発システム論セミナー,(名古屋大学)(2016)

10.  加納剛史,クモヒトデのロコモーションから探る故障に強いシステムの設計論,電気学会東北支部第2回産学連携研究会,(東北大学)(2017)

11.  T. Kano, Inter-limb Coordination via Physical Communication during Animal Locomotion, Workshop “On what is in between: An interdisciplinary dialogue around MA(間)”,(東北大学)(2018)

12.  加納剛史,自律分散制御の体系的設計論の構築に向けて 〜未来予測制御と手応え制御に基づく事例研究紹介〜,第64回 自律分散システム部会研究会 ~生物規範~,(広島)(2019)

13.  T. Kano and A. Ishiguro, Decoding Decentralized Control Mechanism Underlying Adaptive and Versatile Locomotion of Snakes, Society for Integrative and Comparative Biology, Annual meeting, in the symposium “Long Limbless Locomotors: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion”, (Austin, US) (2020)

14. 加納剛史,新たな自律分散制御の枠組みの構築を目指して~理学・工学の垣根を超えたアプローチ~,第2回 トータルバイオミメティクス研究グループ 合同シンポジウム,「バイオミメティクスと群知能」,(オンライン)(2022)

15. 加納剛史,自律分散制御のあり方を問う,新学術領域研究「細胞社会ダイバーシティーの統合的解明と制御」第4回若手ワークショップ,(オンライン)(2022)

国内特許出願

  1. 加納剛史,石黒章夫,杉山雄規,信号機の制御装置、及び、信号機の制御方法,特願2014-223925号,2014年11月4日出願

  2. 加納剛史,石黒章夫,千葉大徳,制御装置、運動モジュール、ロボットおよび制御方法,特願2016-113874号,2016年6月7日出願

  3. 服部 祥英, 福原 洸,  加納 剛史,  石黒 章夫,ロボットの制御装置,ロボットおよびロボットの制御方法,特願2021-100922,2021年6月17日出願

Awards

1.    八重樫和之,加納剛史,小林亮,石黒章夫,第20回日本数理生物学会年会 ポスター賞(2010.9.16),受賞論文:自律分散制御に基づくミミズの一次元這行運動の数理モデル
2.    渡邉航,鈴木翔太,加納剛史,石黒章夫,第20回日本数理生物学会年会 ポスター賞(2010.9.16),受賞論文:クモヒトデにおける腕運動の自発的役割分担生成の数理モデル
3.    佐藤貴英,加納剛史,石黒章夫,第11回計測自動制御学会システムインテグレーション部門講演会(SI2010)優秀講演(2010.12.25) ,受賞論文:局所的な齟齬に基づく 位相制御と筋緊張制御の有機的連関様式
4.    T. Sato, T. Kano, and A. Ishiguro, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), NTF Award for Entertainment Robots and Systems, Finalist (2011.9.29), 受賞論文:A Snake-like Robot Driven by a Decentralized Control That Enables Both Phasic and Tonic Control
5.    渡邉航,鈴木翔太,加納剛史,石黒章夫,第12回計測自動制御学会システムインテグレーション部門講演会(SI2011)優秀講演(2011.12.25) ,受賞論文:腕運動の自発的役割分担生成を可能とするクモヒトデ型ロボットの自律分散制御
6.    佐藤英毅,加納剛史,坂本一寛,松坂義哉,青沼仁志,石黒章夫,第23回日本数理生物学会大会ポスター賞(2013.9.12) ,受賞論文:腕切断実験から探るクモヒトデの腕間協調メカニズム
7.    佐竹冬彦,加納剛史,伊達央,井上康介,石黒章夫,第23回日本数理生物学会大会ポスター賞(2013.9.12),受賞論文:狭窄空間におけるヘビのロコモーションの数理モデル
8.    渡邉 航,鈴木翔太,加納剛史,石黒章夫,2014年度計測自動制御学会 学会賞(論文賞)(2014.7.3),受賞論文:腕運動の自己組織的役割分担生成を可能とするクモヒトデ型ロボットの自律分散制御
9.    加納剛史,佐藤英毅,小野達也,青沼仁志,松坂義哉,石黒章夫,計測自動制御学会システム・情報部門学術講演会2014(SSI2014) SSI Best Research Award(2014.11.23),受賞論文:クモヒトデのレジリアントなロコモーションに内在する自律分散制御則
10. 加納剛史,第10回日本数理生物学会研究奨励賞(2015.8.18) ,受賞研究:生物ロコモーションに内在する自律分散制御則に関する研究
11. M. Dujany, S. Hauser, M. Mutlu, M. van der Sar, J. Arreguit, T. Kano, A. Ishiguro, A. Ijspeert, 2020 IROS Best Paper Award on Cognitive Robotics, Finalist (2020.11), 受賞論文:Emergent Adaptive Gait Generation through Hebbian Sensor-Motor Maps by Morphological Probing
12. 安井浩太郎,加納剛史,E. M. Standen,青沼仁志,A. J. Ijspeert,石黒章夫,日本比較生理生化学会第42回大会 発表論文賞 会長賞 (2020.11.23), 受賞論文:Towards understanding adaptive motor control mechanisms underlying walking and swimming in centipedes
13. K. Yasui, N. Otaki, T. Kano, A. Ishiguro, The 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM2021), the Poster Prize, Second Place (2021.6), 受賞論文:Self-tunable Tegotae-based Control for Snake Locomotion
14. K. Yasui, T. Kano, S. Kuroda, H. Aonuma, Y. Hayase, R. Kobayashi, A. Ishiguro, The 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM2021), the Poster Prize, Honorable Mentions (2021.6), 受賞論文:On the Determinant of Gait Patterns in Myriapod Locomotion
15. A. Fukuhara, T. Kano, R. Kobayashi, Y. Yamamoto, A. Ishiguro, The 9.5th international symposium on Adaptive Motion of Animals and Machines (AMAM2021), the Poster Prize, Honorable Mentions (2021.6), 受賞論文:WaltzBots: Toward understanding interpersonal coordination mechanism underlying ballroom dance
16. 高野俊輔, 安井浩太郎,加納剛史,小林亮,石黒章夫日本機械学会ロボティクス・メカトロニクス部門ROBOMECH表彰(学術研究分野)(2021), 受賞論文:環境に呼応して足並みが柔軟に変化する多脚ロボットの脚間協調制御則
17. 加納剛史,石田實記念財団研究奨励賞(2021.11.26) ,受賞研究:動物ロコモーションに内在する自律分散制御則に関する研究
18. 天野也寸志,日比野良一,菅井賢,加納剛史,石黒章夫,計測自動制御学会論文賞 (2022),受賞論文:分散協調制御によるマルチモータシステムの一構成法
19. 服部祥英,福原洸,加納剛史,石黒章夫,日本ロボット学会第4回優秀研究・技術賞(2023),受賞論文:動物の筋筋膜経線に着想を得た四脚ロボットの脚-体幹連動機構の提案

プレスリリース

  1. クモヒトデに学んだ,想定外の故障に「即座に」適応可能な移動ロボット シンプルな数式でクモヒトデの複雑な動きを表現(2017.12.14),JST),北海道大学,東北大学医学系研究科

  2. 陸上と水中を自在に動き回るムカデから学ぶ柔軟な「身のこなし方」(2019.11.28),東北大学電気通信研究所,オタワ大学,北海道大学,スイス連邦工科大学ローザンヌ校,Human Frontier Science Program

  3. トカゲなどが示す原始的な歩行運動から紐解く全身運動の制御のからくり(2021.7.30),東北大学電気通信研究所,スイス連邦工科大学ローザンヌ校,Human Frontier Science Program

  4. ミミズ団子のほふく前進 〜デコボコ地面を味方につけた変幻自在のうじゃうじゃ集合体〜(2023.8.29),東北大学,広島大学

Media, website

  1. 天才テレビ君(NHK Eテレ)(2011.10.26),ヘビ型ロボット・クモヒトデ型ロボットの紹介

  2. ガリレオX(BSフジ)(2012.6.10) ,ヘビ型ロボット・クモヒトデ型ロボットの紹介

  3. 日本経済新聞 (2017.12.13),「東北大と北大など、クモヒトデに学び想定外の故障に対して即座に適応できる移動ロボットの開発に成功 」, https://www.nikkei.com/article/DGXLRSP465712_R11C17A2000000/

  4. Electronics 360 (2017.12.14), Watch: Robot that can adapt to physical damage was inspired by brittle stars, http://electronics360.globalspec.com/article/10634/watch-robot-that-can-adapt-to-physical-damage-was-inspired-by-brittle-stars

  5. ECN (2017.12.14), Brittle stars inspire new generation robots able to adapt to physical damage, https://www.ecnmag.com/news/2017/12/brittle-stars-inspire-new-generation-robots-able-adapt-physical-damage

  6. Science newsline technology (2017.12.14), Brittle stars inspire new generation robots able to adapt to physical damage

  7. Science Daily (2017.12.14), Brittle stars inspire new generation robots able to adapt to physical damage, https://www.sciencedaily.com/releases/2017/12/171214100840.htm

  8. iNet Honduras (2017.12), Bioinspired robot easily adapts to lost appendages

  9. New Atlas (2017.12.15), Bioinspired robot easily adapts to lost appendages, https://newatlas.com/brittle-star-robot/52624/

  10. Phys Org (2017.12.15), Brittle stars inspire new generation robots able to adapt to physical damage, https://phys.org/news/2017-12-brittle-stars-robots-physical.html

  11. 日刊工業新聞 (2017.12.18), 「脚とれても歩き続けるロボ 宇宙や災害現場で活用,故障を前提に機能設計」, https://www.nikkan.co.jp/articles/view/00454713

  12. 産経新聞 (2017.12.23), 「5本腕のクモヒトデ型ロボット登場 想定外にも対処、東北大など開発」, http://www.sankei.com/premium/news/171223/prm1712230015-n1.html

  13. Asian Scientist (2017.12.25), Losing arms doesn’t bother starfish bot, https://www.asianscientist.com/2017/12/tech/starfish-inspired-robots-adaptation/

  14. EMIRA (2018.1.18), 「クモヒトデから着想!東北大学が故障をものともしない5本腕の移動型ロボットを開発 〜故障などの”想定外を想定するAI”も実現可能に?〜」, http://emira-t.jp/topics/4487/

  15. 読売新聞 (2018.1.25), 「クモヒトデがモデルのロボ 腕一本でも移動再開 災害現場でタフな活躍期待」

  16. 日本経済新聞 (2018.2.25), 「生物に学ぶロボット(2) 壊れても動き続ける「ヒトデ」」, https://www.nikkei.com/article/DGKKZO27303840T20C18A2MY1000/

  17. JSTnews 3月号, 「想定外の故障に「即座に」適応可能なクモヒトデ型移動ロボットを開発」

  18. milsil 2018年3月1日発行号, 「クモヒトデ型ロボット」

  19. 国立環境研究所 環境展望台(2019.12.3), 「東北大など、ムカデの運動制御メカニズムを再現し得る数理モデル構築に接近」, http://tenbou.nies.go.jp/news/jnews/detail.php?i=28420

  20. Mirage News(2019.12.3), Navigating Land and Water: How centipedes walk and swim, https://www.miragenews.com/navigating-land-and-water-how-centipedes-walk-and-swim/

  21. fabcross for エンジニア(2019.12.4), 「陸上と水中で動きを変えて自在に移動するムカデの制御メカニズムを解明――水陸両用ロボットなどへの応用に期待」, https://engineer.fabcross.jp/archeive/191204_tohoku_u.html

  22. ICI Radio-Canada (2019.12.4), Comment les mille-pattes passent-ils si facilement de la marche à la nage?(仏語), https://ici.radio-canada.ca/nouvelle/1415409/mille-pattes-locomotion-deplacement

  23. 財経新聞(2019.12.5), 「水陸自在のムカデ、運動制御の仕組みを解明 ロボット工学への応用も 東北大ら」, https://www.zaikei.co.jp/article/20191205/542677.html

  24. Phys.org (2019.12.9), Navigating land and water: How centipedes walk and swim, https://phys.org/news/2019-12-centipedes.html

  25. Science Daily (2019.12.9), How centipedes navigate through land and water, https://www.sciencedaily.com/releases/2019/12/191209102047.htm

  26. Asia Research News (2019.12.9), Navigating Land and Water, https://www.asiaresearchnews.com/content/navigating-land-and-water

  27. EurekAlert! (2019.12.9) , Navigating navigating land and water, https://www.eurekalert.org/pub_releases/2019-12/tu-nll120819.php

  28. AlphaGalileo (2019.12.9), Navigating Land and Water: How Centipedes Walk and Swim, https://www.alphagalileo.org/en-gb/Item-Display/ItemId/187020

  29. BrightSurf.com (2019.12.9), Navigating Land and Water, https://www.brightsurf.com/news/article/120919498727/navigating-navigating-land-and-water.html

  30. ジェグテック ヘッドライン(2019.12.11), 「東北大学などが、ムカデの動きを解明」, https://jgoodtech3.smrj.go.jp/all/b93b6c86d413789676bd025a25003c34/

  31. Cosmos (2019.12.12), Something in the way it moves -Studying a centipede sheds light on adaptive locomotion, https://cosmosmagazine.com/biology/something-in-the-way-it-moves/

  32. EurekAlert! (2021.7.30), Decoding how salamanders walk 
    https://www.eurekalert.org/news-releases/923994

  33. Tech Xplore (2021.7.30), Decoding how salamanders walk
    https://techxplore.com/news/2021-07-decoding-salamanders.html

  34. Mirage News (2021.7.30), Decoding how salamanders walk
    https://www.miragenews.com/decoding-how-salamanders-walk-605303/

  35. Quo (2021.7.31), VÍDEO: EL NACIMIENTO DE LOS ROBOTS-SALAMANDRA”
    https://quo.eldiario.es/tecnologia/q2107335564/robots-salamandras-caminar/

  36. Science Daily (2021.8.2), Decoding how salamanders walk
    https://www.sciencedaily.com/releases/2021/08/210802140201.htm

  37. Science Japan (2021.11.2), Investigating the mechanism of whole-body motor control of lizard locomotion and its link to applications in robotics”
    https://sj.jst.go.jp/news/202111/n1102-03k.html

  38. Mirage (2023.9.1), Worm Groups Utilize Rough Terrain for Collective Movement   https://www.miragenews.com/worm-groups-utilize-rough-terrain-for-1076177/

  39. Science Japan (2021.11.2), Investigating the mechanism of whole-body motor control of lizard locomotion and its link to applications in robotics” https://sj.jst.go.jp/news/202111/n1102-03k.html

  40. TechXplore (2023.9.1), Team simulates collective movement of worm blobs for future swarm robotic systems https://techxplore.com/news/2023-09-team-simulates-movement-worm-blobs.html?utm_source=twitter.com&utm_medium=social&utm_campaign=v2

  41. News8Plus (2023.9.1), Team simulates collective movement of worm blobs for future swarm robotic systems https://news8plus.com/team-simulates-collective-movement-of-worm-blobs-for-future-swarm-robotic-systems/

  42. EurekAlert! (2023.9.1), Worm aggregates leverage uneven terrain to collectively move through narrow spaces https://www.eurekalert.org/news-releases/1000311

  43. 日本経済新聞(電子版)(2023.9.4),ミミズの塊の移動メカニズム解明 ロボットへの活用https://www.nikkei.com/article/DGXZQOUC014EZ0R00C23A9000000/

  44. 大学ジャーナルオンライン(2023.9.4),イトミミズの群れの移動は地面の凹凸を利用する、東北大学と広島大学が発見 https://univ-journal.jp/234086/

Research Grant

科学研究費補助金・基金

  1. 若手研究(B) (課題番号 22760310)「這行様ロコモーションに内在する位相・筋緊張が連関した自律分散制御則の解明」,交付金総額 3,100千円,研究代表者(2010 –2011年度)

  2. 若手研究(B) (課題番号 24760330)「ヘビのロコモーションから探る身体の可変形性が生み出す適応的運動機能の発現機序」,交付金総額  3,600千円,研究代表者(2012 –2013年度)

  3. 挑戦的萌芽研究(課題番号 26630193)「多脚動物が示す巧みな脚間協調に着想を得た交通信号制御の新展開」,交付金総額  3,100千円,研究代表者(2014 –2015年度)

  4. 基盤B特設研究(課題番号 16KT0099)「自切する生物から切り拓くスーパーレジリアントなシステムの設計論」,交付金総額  14,200千円,研究代表者(2016 –2019年度)

  5. 国際共同研究加速基金(国際共同研究強化(B))(課題番号19KK0103 )「バクテリアのバイオフィルム形成現象から切り拓く超サバイバルシステムの革新的設計論」,交付金総額  14,100千円,研究代表者(2019 –2023年度)

  6. 基盤研究(A)(課題番号 20H00572)「対人運動技能の制御・学習則の解明」交付金総額  34,900千円,研究分担者(2020-2023年度)

  7. 学術変革領域研究 (B)(総括班)(課題番号21H05103)「ヘテロ群知能:多様な細胞の集団動態から切り拓く群知能システムの革新的設計論」交付金総額 7,000千円,研究代表者(2021-2023年度)

  8. 学術変革領域研究 (B)(計画班)(課題番号21H05104)「ヘテロ群知能の構成論的理解から切り拓くハイアベレージなシステムの設計論」交付金総額 33,600千円,研究代表者(2021-2023年度)

  9. 基盤研究(A)(課題番号 22H00203)「古生物運動制御学:絶滅動物の運動様式の革新的復元方法の創成」,石黒章夫,分担,交付金総額  32,400千円(2022-2025年度)

  10. 基盤研究(B)(一般)(課題番号 23H01138),「イトミミズの多芸多彩な集団行動から紐解く合目的的自己組織化現象の発現原理」,加納剛史,代表,交付金総額 34,900千円(2023-2026年度)

  11. 国際共同研究加速基金(海外連携研究)(課題番号未定),「サイボーグ化から解き明かす動物ロコモーションに内在する形態非依存な運動制御原理」,石黒章夫,分担,交付金総額16,200千円(2023-2026年度)

民間等の財団からの研究資金

  1. 第11回 積水化学 自然に学ぶものづくり研究助成プログラム「這い回り,泳ぎ,そして飛ぶ - ヒラムシに着想を得た全地形万能二次元シート型ロボットの開発 -」,交付金総額 1,000千円(研究代表者)(2012年10月–2013年9月)

  2. カシオ科学振興財団,第35回(平成29年度)研究助成「環境に呼応して多様な運動パターンを発現可能な自律分散型索状ロボットの開発」,交付金総額 1,000千円(研究代表者)(2017年12月–2018年11月)

  3. 2019年度立石科学技術振興財団 研究助成(A)「「素早く,安全に,そして滑らかに」:人間と調和可能な移動体群の自律分散制御」,交付金総額 2,465千円(研究代表者)(2019年4月–2021年3月)

  4. 双葉電子記念財団研究助成,「歩行者の選択的注意メカニズムから切り拓く「素早さ,安全さ,滑らかさ」を実現可能な移動体群の自律分散制御」,交付金総額 1,000千円(研究代表者)(2021年6月–2023年5月)

その他

  1. 平成27年度学際科学フロンティア研究所領域創成研究「クモヒトデのロコモーションから探るレジリアントな振る舞いの設計論」,交付金総額 2,000千円(研究代表者)(2015年7月–2017年3月)

  2. 平成30年度学際科学フロンティア研究所領域創成研究「車線や信号機なぞ取り去ってしまえ!:次世代道路交通システムを考える」,交付金総額 2,000千円(研究代表者)(2018年7月–2020年3月)

  3. Royal Society International Cost Share Grant (Japan and Taiwan only) (IEC/R3/183114), Control principle for super-survival system inspired by bacterial biofilm formation, 交付金総額 £8,700.00 (Co-applicant) (2019.3 –2021.3)

  4. タフ・サイバーフィジカルAI研究センター研究費,「チスイコウモリの利他行動から切り拓くサバイバビリティの高い群ロボットシステムの設計論」交付金総額 1,000千円(研究代表者)(2019年10月–2020年3月)

  5. タフ・サイバーフィジカルAI研究センター研究費,「チスイコウモリの互恵的利他行動に学ぶサバイバビリティの高いシステムの設計論」,交付金総額 400千円,(研究代表者)(2020年9月〜2021年3月)

  6. タフ・サイバーフィジカルAI研究センター研究費,「階層性のある自律分散システムの設計論構築,交付金総額 300千円,(研究代表者)(2021年7月〜2022年3月)

bottom of page